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Summary

1. Bayesian inference is a powerful tool to better understand ecological processes across varied subfields in ecol-

ogy, and is often implemented in generic and flexible software packages such as the widely used BUGS family

(BUGS, WinBUGS, OpenBUGS and JAGS). However, some models have prohibitively long run times when

implemented in BUGS. A relatively new software platform called Stan uses Hamiltonian Monte Carlo (HMC),

a family ofMarkov chainMonte Carlo (MCMC) algorithmswhich promise improved efficiency and faster infer-

ence relative to those used byBUGS. Stan is gaining traction inmany fields as an alternative to BUGS, but adop-

tion has been slow in ecology, likely due in part to the complex nature ofHMC.

2. Here, we provide an intuitive illustration of the principles of HMC on a set of simple models. We then com-

pared the relative efficiency of BUGS and Stan using population ecologymodels that vary in size and complexity.

For hierarchical models, we also investigated the effect of an alternative parameterization of random effects,

known as non-centering.

3.. For small, simple models there is little practical difference between the two platforms, but Stan outperforms

BUGS asmodel size and complexity grows. Stan also performs well for hierarchical models, but is more sensitive

tomodel parameterization than BUGS. Stanmay also bemore robust to biased inference caused by pathologies,

because it produces diagnostic warnings where BUGS provides none. Disadvantages of Stan include an inability

to use discrete parameters, more complex diagnostics and a greater requirement for hands-on tuning.

4. Given these results, Stan is a valuable tool for many ecologists utilizing Bayesian inference, particularly for

problems where BUGS is prohibitively slow. As such, Stan can extend the boundaries of feasible models for

applied problems, leading to better understanding of ecological processes. Fields that would likely benefit include

estimation of individual and population growth rates, meta-analyses and cross-system comparisons and spa-

tiotemporal models.

Key-words: Bayesian inference, hierarchical modelling, Markov chain Monte Carlo, no-U-turn

sampler, Stan

Introduction

Bayesian inference is used widely throughout ecology, includ-

ing population dynamics, genetics, community ecology and

environmental impact assessment, among other subfields (Elli-

son 2004). In the Bayesian paradigm, the likelihood of the

observed data is combined with prior distributions on parame-

ters, resulting in a posterior probability distribution of parame-

ters, from which inference is made (Gelman et al. 2014).

Expectations of posterior quantities, such as means or quan-

tiles, are commonly approximated using numerical techniques,

with Markov chain Monte Carlo (MCMC) being the most

common (Brooks et al. 2011).

The popularity of Bayesian inference grew particularly fast

with the development of generic and flexible software plat-

forms, with the BUGS family (here defined as BUGS, WINBUGS,

OPENBUGS and JAGS; see Appendix A, Supporting Information)

being by far the most common (Fig. 1). For a given model,

BUGS automatically selects an MCMC algorithm and argu-

ments controlling its behaviour (i.e. tuning parameters), where

necessary. The analyst can thus focus on the model and scien-

tific questions, rather than the mechanics of the underlying

MCMC algorithms. As such, these platforms have been the

workhorse for Bayesian analyses in ecology and other fields

for the last 20 years.

However, for certain models, the time required for inference

(run-time) using BUGS is prohibitively long. Long run-times

*Correspondence author. E-mail: monnahc@uw.edu

[Correction note: The abstract was originally omitted from this article

when it was first published 14 November 2016, the abstract was added

on 16 January 2017.]

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society

Methods in Ecology and Evolution 2017, 8, 339–348 doi: 10.1111/2041-210X.12681



often occur in BUGS because the underlyingMCMCalgorithms

are inefficient, which is further compounded when the model

needs to run many times during development, model selection

(e.g. cross-validation; Hooten & Hobbs 2015), or simulation

testing. These issues remain despite the increasing power of

computers because data sets are increasing in size and models

are becoming more complex (Bolker et al. 2013). At the same

time, hierarchical modelling is becoming increasingly popular,

as this type of model is widely recognized as a natural tool for

formulating and thinking about problems in many ecological

subfields (Royle & Dorazio 2008; Cressie et al. 2009; Thorson

& Minto 2014). Thus, there is a need for alternatives to BUGS

that are faster across a range of model size, complexity and

hierarchical structure.

A family of MCMC algorithms called Hamiltonian Monte

Carlo (HMC; Neal 2011) promises improved efficiency over

the algorithms used by BUGS, but until recently have been slow

to be adopted for two reasons. First, HMC requires precise

gradients (i.e. derivatives of the log-posterior with respect to

parameters), but analytical formulas are rare and numerical

techniques are imprecise, particularly in higher dimensions.

Secondly, the original HMC algorithm requires expert, hands-

on tuning to be efficient (Neal 2011). Both of these hurdles

have recently been overcome, the first with automatic differen-

tiation (e.g. Griewank 1989) and the second with an HMC

algorithm known as the no-U-turn sampler (NUTS; Hoffman

&Gelman 2014). These advances have been packaged into the

open-source, generic and flexible modelling software Stan

(Gelman, Lee & Guo 2015; Stan Development Team 2016,

Carpenter et al. in press), which effectively aims to replace the

BUGS family and is quickly gaining traction across diverse fields

(Fig. 1).

Despite the potential of HMC, and the availability of Stan,

adoption has been slow in ecology, likely because ecologists

are either unaware of its existence, or are unsure when it should

be preferred over BUGS. Here, we illustrate the principles that

underlie HMC and then compare the efficiency between Stan

and a BUGS variant, JAGS (Plummer 2003), across a range of

models in population ecology. Specifically, we test how HMC

performance scales with model size and complexity, and its

suitability for hierarchical models. Our goal is to explore the

relative benefits of Stan and JAGS and to provide guidance for

ecologists looking to use the power of HMC for faster and

more robust Bayesian inference.

Principles of HamiltonianMonteCarlo

The existing literature on HMC tends to focus on mathemati-

cal proofs of statistical validity and is accessible primarily to

statisticians. We therefore first illustrate the principles of

HMC using simple models, and contrast it with other MCMC

algorithms.

Markov chain Monte Carlo algorithms sequentially gen-

erate posterior samples (i.e. vectors containing a value for

each parameter), resulting in a finite number of autocorre-

lated samples which are used for inference (Gelman et al.

2014). Many algorithms transition between samples by

proposing a new sample, based on the current sample and

tuning parameters, and then accept it with known proba-

bility. If rejected, the current iteration is the same as the

previous one.

For example, the widely used randomwalkMetropolis algo-

rithm (Metropolis et al. 1953) typically proposes amultivariate

normal sample, centered at the current sample and uses the

proposed to current posterior density ratio to determine the

acceptance probability. In this case, all parameters are pro-

posed and updated simultaneously, and the covariance of the

proposal distribution is tuned to achieve an optimal acceptance

rate (Roberts & Rosenthal 2001). Other algorithms update a

single parameter at a time, looping through each within a tran-

sition. This is the behaviour typically used by BUGS, which uses

Gibbs sampling if possible, and alternatives if not.

If an algorithm cannot propose samples in regions of the

posterior distant to the current state, then it exhibits random

walk behaviour: multiple transitions are necessary to move

between regions, leading to higher autocorrelation and slow

mixing. HMC avoids this inefficient random walk behaviour

because it can propose values (almost) anywhere in the poste-

rior from anywhere else. It does this using a physical system

known asHamiltonian dynamics.

HAMILTONIAN DYNAMICS

AHamiltonian system can be conceptualized as a ball moving

about a frictionless surface over time (e.g. imagine a marble

inside a large bowl). The ball is affected by gravity and its own

momentum: gravity pulls it down while momentum keeps it
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Fig. 1. Citation patterns of Stan and the BUGS family of Bayesian soft-

ware platforms, for all journals in all fields. Data are from ISI Web of

Science Core Collection. The y-axis units are the same, despite variable

ranges.
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going in the same direction. A set of differential equations gov-

ern themovement of the ball over time (its path).

There are some important concepts associated with the ball.

The position of the ball is its coordinate vector (i.e. where it is

on the surface) and associated with each position variable is a

momentum variable. The potential energy is the height of the

surface at a given position. The kinetic energy is related to the

momentum, assumed for now to be the sum of the squared

momenta. Because the surface is frictionless, the total energy

(potential plus kinetic), known as theHamiltonian (H), remains

constant over time. Later, we will see that, in the context of

MCMC, the position vector corresponds to themodel parame-

ters and the potential energy to the negative log of the posterior

density.

For now, consider the parabola y = x2 (Fig. 2a), which has

a single position variable (x) and thus a single momentum vari-

able.We place the ball at position x = �1 and height (potential

energy) y = 1, and let it go such that it has no initial momen-

tum or kinetic energy. Gravity pulls it down, building speed

over time as potential energy is converted to kinetic energy

(Fig. 2b,c).Momentum carries it past position x = 0, where all

potential energy has been converted into kinetic energy. As

there is no friction, it stops exactly at x = 1 and y = 1, where

the potential and kinetic energies return to their initial states

(Fig. 2c). At this point, it will reverse course (Fig. 2a–c red

lines) and oscillate forever with the energies varying but their

sum (H) remaining constant.

Now consider a 2D parabola, y ¼ x21 þ x22 (i.e. a bowl

shape). The position and momentum vectors are of length

two, but the kinetic and potential energies are scalars. We

place the ball as before, but this time we flick it, imparting

momentum with a direction and magnitude (Fig. 2d). If

flicked sideways, it will move in a circle of constant height.

If flicked straight down, it will cross the bottom and go up

the other side. An elliptical path occurs when flicking the

ball at a downward angle. A more complex surface typical

of a real model, such as a logistic growth model (see ‘Case

studies’ below), leads to more complex paths (Fig. 2e,f), but

Position (t)

H
ei

gh
t (
t)

(a)

0·
0

0·
2

0·
4

0·
6

0·
8

1·
0

–1·0 –0·5 0·0 0·5 1·0

Position (t)

M
om

en
tu

m
 (t

)

(b)

–1·0 –0·5 0·0 0·5 1·0

–1
·0

–0
·5

0·
0

0·
5

1·
0

Kinetic

Potential

Total (H)

Time

E
ne

rg
y

(c)
0·

0
0·

5
1·

0

0 1 2 3 4 5 6
x1

x 2

(d)

–2 –1 0 1 2

–2
–1

0
1

2

r

K

(e)

0·06 0·08 0·10 0·12 0·14

45
00

50
00

55
00

60
00

65
00

Time

E
ne

rg
y

0·0 0·5 1·0 1·5

0
1

2
3

Kinetic

Potential

Total (H)(f)

Fig. 2. Basics of Hamiltonian dynamics. (a)

An example where a ball is dropped from the

black point, it rolls down the surface over time

(t), and momentum carries it up the other side

where it reverses direction (red line), returning

to where it started. The lines are offset to dis-

tinguish black and red paths. The position and

momentum variables (b) and energies (c) over

time corresponding to the path in (a). (d)Mul-

tiple paths for a 2d parabola. Grey dashed

lines show posterior contours; initial positions

and paths are red arrows and black lines. (e)

Partial path (black line) on a posterior of a

logistic population model with intrinsic

growth rate (r) and carrying capacity (K). Red

arrow shows initial position. (f) The energies

for the trajectory in (e).
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which obey the same principles and intuition as these simple

examples.

The principles of Hamiltonian dynamics relate directly to

MCMC by providing a way to generate efficient transitions.

The ball could move (almost) anywhere given the right length

of time and initial momentum, thus providing transitions with

directed movement and avoiding inefficient random walk

behaviour. MCMC algorithms that utilize Hamiltonian

dynamics are generally referred to as HMC, and we briefly

review two: static HMCandNUTS.

STATIC HMC

StaticHMCwas the firstMCMCalgorithm to utilizeHamilto-

nian dynamics (Duane et al. 1987). Although replaced by

more advanced algorithms, static HMC is simpler to explain

and contains most of the properties relevant for understanding

NUTS. A static HMC transition occurs by simulating the ball

from the current position with random momenta for a finite

length of time and proposing the state (position) at the end of

this simulated, finite path.

However, three issues complicate this process. The first is

how to simulate movement on arbitrary log-posteriors (i.e.

generate paths). Simple models like a parabola have analyti-

cal solutions to the underlying differential equations; thus,

exact, continuous paths are possible. However, for most

models, the continuous paths must be approximated using a

numerical method known as the leapfrog integrator (we refer

to approximated paths as trajectories). A trajectory depends

on the step size (ɛ) and the number of steps (L; Fig. 3a,b).

The position vector at step L is the proposed sample for that

transition, while the intermediate steps are discarded

(Fig. 3c). Approximation errors cause the ball to deviate

from the continuous path, and thus, H is not constant over

time (Fig. 3d).

The next challenge is determining the optimal trajectory

length (i.e. ɛL). If the trajectory length is too short, distant pro-

posals are impossible, leading to an inefficient random walk. If
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Fig. 3. Examples demonstrating the basics of

HMC. (a) The effect of different step sizes (ɛ)
and number of steps (L) on trajectories. The

blue and red trajectories approximate the

same path (solid grey line), with the same ini-

tial position (red point) and trajectory length

(ɛL), but oppositemomentum. (b) Trajectories

on a logistic posterior surface with identical

initial position (black point) and momentum

vectors. The black trajectory is slow to tra-

verse the surface, while the red trajectory

shows accumulating approximation errors,

causing it to diverge. The blue trajectory uti-

lizes a mass matrix, making the surface easier

to traverse. (c) Multiple iterations of static

HMC; black points are and accepted and

intermediate steps (grey arrows) are discarded.

(d) The acceptance ratios (a) of the trajectories
in (b), with corresponding acceptance proba-

bility of min(1, a). Multiple draws from the

same initial position using a random

walk Metropolis (e) or NUTS (f) algorithm,

with and without an appropriate mass matrix

(colours).
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it is too long, the trajectory will retrace its steps (e.g. Fig. 3a),

which is wasteful computationally. Thus, efficiency depends on

the trajectory length, but the optimal length is difficult to

determine and a crucial tuning step required for static HMC

(Betancourt 2016b).

The last issue is determining the step size, given a trajectory

length. The same length can be attained by taking fewer steps

of larger size, or more steps of smaller size (Fig. 3a,b). As each

step is computationally costly, the fewer the steps the faster the

transition. However, there is a downside to large step sizes:

they lead to more variation in H, and in some cases, the

approximation error accumulates such that the total energy

(H) goes to infinity, known as a divergent transition (red trajec-

tory, Fig. 3b). AMetropolis acceptance step accounts for vari-

ation in H by accepting the proposed state with probability

min(1, a), where a is the exponential of the energy lost. Thus,

proposals are always accepted if the total energy has decreased,

whereas increased energy is accepted with a probability <1
(Fig. 3d). Increasing the step size reduces run-time, but

increases approximation error, leading to more rejected states

and divergent transitions, degrading the efficiency of the algo-

rithm. Optimizing the step size is thus another crucial step in

static HMC (Betancourt, Byrne&Girolami 2014a).

Given a step size and number of steps, the last step is to spec-

ify a kinetic energy function. In HMC, it is typically the log

density of a multivariate normal random vector where the

covariance matrix is known as themass matrix. Previously, we

assumed the kinetic energy was the sum of the squared

momenta, corresponding to an identitymassmatrix. The effect

of the mass matrix is to globally transform the posterior to

have a simpler geometry for sampling. The variances stretch

the posterior so all parameters have the same scale, while the

covariances rotate it so they are approximately independent.

When successful, the transformed parameters have a scale of 1

and no correlations, resembling iid standard normal random

variables (blue trajectory, Fig. 3b.)

The mass matrix is analogous to the covariance of the pro-

posal function sometimes used in Metropolis-Hastings sam-

plers, which can have substantial impacts on sampling

(Fig. 3e). Depending on the model, HMC algorithms can be

efficient with an identity mass matrix (Fig. 3f), but it will

require more leapfrog steps per transition and more time

(Fig. 3b). Thus, to get efficient sampling with HMC, the mass

matrix should approximate the covariance of the posterior,

but this information is often not known a priori.

Specifying an optimal trajectory length, step size and mass

matrix is critical for static HMC to work efficiently, leading it

to require expert hands-on tuning and a priori knowledge

(Neal 2011). Fortunately, NUTS automates this process and

provides efficient sampling withminimal or no tuning.

THE NO-U-TURN SAMPLER

No-U-turn sampler extends static HMC by automating tun-

ing: neither the step size nor number of steps need be specified

by the user. NUTS determines the number of steps via a

sophisticated tree building algorithm, which we briefly describe

here. A single NUTS trajectory is built by iteratively accumu-

lating steps. In the first iteration, a single leapfrog step is taken

from the current state so the trajectory has a total of two steps.

Then, two more steps are added (total of four), then four more

(total of eight), and so forth, with each iteration doubling the

length of the trajectory. This doubling procedure repeats until

the trajectory turns back on itself and a ‘U-turn’ occurs, or the

trajectory diverges (i.e.H goes to infinity). The number of dou-

blings is known as the tree depth. The key aspect of this tree

building algorithm is that it automatically creates trajectories

that are neither too short nor too long. In practice, this

means trajectory lengths vary among transitions: it may take

eight steps or 128, depending on the position and momentum

vectors.

The no-U-turn sampler determines the step size by adapting

it during the warm-up (burn-in) phase to a target acceptance

rate (adapt_delta in Stan). The tuned step size is then used

for all sampling iterations. In contrast to static HMC, NUTS

does not use a Metropolis acceptance step, so an analogous

statistic is used for adaptation. Betancourt, Byrne & Girolami

(2014a) found this target acceptance rate should generally be

between 0�6 and 0�9, with larger values being more robust in

practice. Thus, NUTS effectively reduces static HMC to a sin-

gle, user-specified tuning parameter: the target acceptance rate.

HMC IN PRACTICE

One disadvantage of HMC is that, unlike BUGS, only continu-

ous parameters are possible because discrete parameters do

not have gradients. Amanual implementation could overcome

this by alternating Gibbs updates and HMC (Neal 2011), and

future versions of Stanmay implement such a scheme.Alterna-

tively, in some cases, they can bemarginalized outmanually by

the user (Chapter 10 and 12, StanDevelopment Team 2016).

Another disadvantage is that HMC is developed using

sophisticated mathematics and statistics (e.g. Betancourt et al.

2014b), making it difficult to develop a deep understanding or

intuition about their behaviour. We provide implementations

of the static HMC andNUTS algorithms, written in R (RCore

Team 2016), in Appendix B. We encourage the interested

reader to experiment with the samplers to further their under-

standing of HMC, while using the faster and more robust Stan

implementation for inference of real problems.

No-U-turn sampler (and static HMC) is similar to other

MCMC algorithms: valid inference is conditioned on a con-

verged chain, but this is impossible to prove (Gelman et al.

2014). The analyst is responsible for assessing convergence

beforemaking inference, and forNUTS, this includes assessing

adaptation. Information about step size, tree depths and mass

matrix quantities are reported in the output of a Stan run, and

they should be checked routinely. For example, the adapted

step size should be consistent across multiple chains, post-

warm-up divergences should be minimized (by increasing tar-

get acceptance rate) and the maximum tree depth increased if

necessary. The user manual (Stan Development Team 2016)

has more information, advice on fitting strategies and details

of the adaptation procedure for themassmatrix and step size.

© 2016 The Authors. Methods in Ecology and Evolution © 2016 British Ecological Society, Methods in Ecology and Evolution, 8, 339–348
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Key concepts that arise when using NUTS in Stan are sum-

marized briefly below:

• Smaller step sizes have higher acceptance rates, but require

more steps and thus time. Larger step sizes reject more states

and can have more divergences. The optimal step size depends

on the model and is tuned to achieve a target acceptance rate

set by the user (adapt_delta), defaulting to 0�8, but higher
values needed formore difficult posteriors.

• The number of steps is determined dynamically for each

transition using a tree building algorithm, where the trajectory

repeatedly doubles in length until aU-turn occurs. The number

of doublings is known as the tree depth.

• If the mass matrix approximates the covariance of the poste-

rior, the algorithm ‘sees’ a simpler surface and is more efficient.

By default only the diagonal terms are estimated, accounting

for differences in scales, but not correlations, between parame-

ters. Mass matrices with nonzero covariance terms, referred to

as dense, are available in Stan but are not commonly used.

• The optimal step size depends on the mass matrix, and the

mass matrix cannot be well estimated without sampling from

the entire posterior, which requires a reasonable step size.

Thus, sufficiently long warm-ups are needed for effective adap-

tation and efficient sampling.

Case studies

We tested the efficiency of Stan and JAGS for simulated and

empirical models from population ecology. To quantify effi-

ciency, we used the minimum number of effective samples per

unit time, E ¼ bNESS=t, a standard approach to compare

among algorithms and software platforms. Further details of

how this was calculated can be found in Appendix C. This defi-

nition of efficiency (E) can be roughly thought of as the num-

ber of independent samples generated per unit time.

We used matching parameterizations for Stan and JAGS, but

explored two parameterizations for each hierarchical model

and platform. MCMC efficiency for hierarchical models

depends on the random effect parameterization, with the cen-

tered and non-centered complementary forms being useful for a

broad class of models (Papaspiliopoulos, Roberts & Skold

2007; Betancourt & Girolami 2015). Briefly, the centered form

models the random effects (s) directly: s ~ N(l, r2), while the

non-centered form does it indirectly by letting s = l + rZ,
where Z ~ N(0, 1) are the model parameters and implying

s ~ N(l, r2). See Appendix D for further information and ref-

erences. We test both forms because the most efficient can

depend on the amount of information aboutr.
Initial values, random seeds and length of adaptation can

have large impacts, particularly for HMC, so we ran 20 chains

of length 40 000 without thinning, initialized from a random

sample from a previously run long chain.We used the first half

of each chain as a warm-up, discarding those samples but

including warm-up time (but not compilation time) in the total

run-time.We also did not include time to tune the target accep-

tance rate for Stan, as the analyst will often determine accept-

able tuning parameters during model development. We used

default settings for JAGS and Stan, except increasing the

target acceptance rate from its default of 0�8 where needed

(see Appendix E). We checked convergence, as is typically car-

ried out for MCMC output, such as the potential scale reduc-

tion, bR, being close to 1 (Gelman et al. 2014), in addition to

the specific diagnostics forNUTS.

Our tests included two simulated models and four models

with real data (Table 1). The simulated models were a multi-

variate normal with random covariances (MVND) or repeated

correlations (MVNC), both of which were easy to vary in the

number of fixed effects and covariance structure. Our simu-

lated nonlinear mixed effects somatic Growth model varied in

Table 1. Summary of case studies used to compare efficiency between Stan and JAGS. Further details are available inAppendix E. Latent parameters

are thosemodelled as random effects

Model

name Description Data

Parameters

(Latent) Hierarchical structure Reference

MVND Multivariate normal with

covariances generated from

inverseWishart

Simulated Varies:

2–200
None Simulated

MVNC Multivariate normal with all off-

diagonals set to q
Simulated Varies:

5–50
None Simulated

Growth Nonlinear somatic growthwith

repeatedmeasures

Lengths at age Varies:

16–406
(10–400)

Normal on growth rate and

maximum length, in log space

Simulated; see

Schnute (1981)

Redkite Age-dependent survival

probabilities

Mark–recapture of
birds

5 None Section 8�4 ofK�ery&

Schaub (2012)

Swallows State-space survival and

detectionwith environmental

covariates

Mark–recapture of
birds

177

(172)

Year and family effects for survival,

family effects for detection

Section 14�5 of
Korner-Nievergelt

et al. (2015)

Logistic State-space fisheries logistic

population dynamics

Annual catch per

unit effort;

catches

28

(22)

Annual biomass dynamics

deviations

Millar &Meyer

(2000)

Wildflower Binomial generalized linear

model of flowering success

Stages, flower, and

seed pod

production

1101

(1072)

Year effects on intercept; crossed

effects on intercept and slope for

covariate

Bolker et al. (2013)
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the number of individuals. The first two real data models were

fit to mark–recapture data of birds and differed in their size

and complexity: the Redkite model only estimates survival

while the Swallows model estimates survival and detection

probabilities using environmental covariates in a complex hier-

archical state-space formulation. We also fit a state-space

Logistic population dynamics model to fisheries data to esti-

mate temporal trends in abundance. Lastly, our Wildflower

model was a generalized linear mixed effects model with

crossed random effects estimating flowering success. The case

studies ranged from 5 to 1101 parameters and were a mixture

of hierarchical and non-hierarchical models. Further details

can be found in Appendix E, andmodel files for both Stan and

JAGS inAppendix B.We did our analyses usingR and the pack-

ages RSTAN and RJAGS.

Results

For the multivariate normal models (MVND and MVNC),

the run-time of JAGS increased at a faster rate than Stan with

increasing number of parameters, although the minimum

effective sample size for a given run was similar between the

two software platforms. Stan was more efficient by several

orders of magnitude because its run-time for each sample

was faster, and increasingly better with more parameters

(Fig. 4a,b). For the growth model, Stan consistently outper-

formed JAGS at higher dimensions for both parameterizations.

However, Stan had more variable efficiencies than JAGS with

fewer individuals.

Stan was more efficient for the real-world models as well

(Table 2), up to 63 times for the Logistic model in the non-

centered form. JAGS was faster for the centered Swallows and

Wildflower models, but for both the non-centered Stan model

was the fastest option overall. Thus, Stan was faster for all

models (using the optimal parameterization), although the

variability in Stan’s efficiency tended to be higher than for JAGS

(results not shown), likely reflecting HMC’s sensitivity to tun-

ing compared to other algorithms.

We also found clear differences between software platforms

in the effect of the parameterization for hierarchical models.

For Stan, the non-centered form was consistently faster than

the centered form formodels with real data: 4�3 times faster for

the Logistic, 2�8 times for the Swallows and 129 times for the

Wildflower model. In contrast, JAGS was slower for all three:

0�90, 1�00 and 0�67, respectively. For the simulated Growth

Table 2. Case study results comparing effi-

ciency of Stan and JAGS. Max correlation is the

largest absolute pairwise correlation, calcu-

lated from converged samples. Efficiency (E) is

the number of effective samples per time

Model

Random effects

parameterization

Max

correlation

Median

Estan

Median

Ejags

MedianEstan/Ejags

(Range)

Redkite NA 0�83 1102�85 302�99 3�54 (1�14–10�03)
Logistic Centered 0�96 12�35 0�98 12�2 (7�88–34�54)
Logistic Non-centered 0�96 53�60 0�88 63�33 (18�25–132�02)
Swallows Centered 0�90 0�12 0�10 0�94 (0–2�96)
Swallows Non-centered 0�81 0�34 0�10 2�4 (0�1–10�04)
Wildflower Centered 0�96 0�01 0�06 0�14 (0�02–1�03)
Wildflower Non-centered 0�96 1�29 0�04 34�2 (13�11–60�7)
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Fig. 4. Comparison of efficiency (E) for Stan and JAGS across simulated

models. The means (points) and ranges (segments) are across 20 repli-

cates. (a) A multivariate normal with increasing dimensionality

(MVND), either independent or with random correlations from an

inverseWishart distribution. Ranges are too narrow to be visible. (b) A

multivariate normal with repeated correlations on the off-diagonals for

varying dimensions (MVNC). (c) A nonlinear mixed effects model with

two latent parameters per individual (Growth); ranges were left out for

visual clarity.
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model, the non-centered form was faster for Stan, but slower

for JAGS across all dimensionalities (Fig. 4c).

Discussion

Hamiltonian Monte Carlo is a family of MCMC algorithms

which utilizes the posterior geometry and properties of Hamil-

tonian dynamics to make directed MCMC transitions, mini-

mizing the inefficient random walk behaviour that degrades

the performance for many algorithms used by JAGS. HMC is

available to ecologists in the form of Stan, a generic and flexi-

ble software package with a similar workflow to JAGS. Here, we

demonstrated that Stan outperformed JAGS for all simulated

and real-world models from population ecology across a range

of dimensions and complexity. Stan was more sensitive to the

parameterization of the random effects, suggesting analysts

use non-centered parameterizations to improve performance

(AppendixD).

Our findings corroborate studies from other fields (e.g.

Grant et al. 2016), but come with caveats when trying to

extrapolate. For example, our simulated models might not

reflect nuances in real data, or might not be representative of

typical models in other subfields of ecology. Fair comparisons

between software are also difficult, because many factors influ-

ence performance, including, but not limited to, priors, tuning

parameters, length of chains and parameterization chosen. For

log σ

τ

(a) Centered

–14 –12 –10 –8 –6 –4 –2

–0
·1

0
–0
·0

5
0·

00
0·

05
0·

10

log σ

Z

(b) Non-centered

–14 –12 –10 –8 –6 –4 –2

–3
–2

–1
0

1
2

3

log σ

τ
=

σ
⋅Z

(c) Non-centered

–14 –12 –10 –8 –6 –4 –2

–0
·1

0
–0
·0

5
0·

00
0·

05
0·

10 Centered
Non-centered

No. of Individuals

%
 D

iv
er

ge
nc

es

(d)

2 4 6 8 25 50

0
5

10
15

Fig. 5. Effects of non-centering on diver-

gences and bias for the random effects on

growth rate in the Growthmodel with 10 indi-

viduals. s is the deviation from the mean for

an arbitrary individual and the parameters in

the centered model, r its standard deviation

and Z ~ N(0, 1) the parameters in the non-

centered model. Samples from: (a) the cen-

tered model (target acceptance rate d = 0�95);
(b) the non-centered model (d = 0�80); and (c)

the transformed non-centered parameters,

s = rZ. Divergences in (a), shown in red, arise

because the adapted step size is too large for

the high gradients at low r, creating an inac-

cessible region and leading to biased r (i.e. no

samples below log r = �6). The non-centered

parameterization eliminates the curvature and

hence the divergences and bias (c). (d) Median

rate of divergent transitions using d = 0�80 for
both parameterizations. As information

increases about r (i.e. more individuals) the

marginal distribution of r narrows, simplify-

ing the geometry and lowering the rate of

divergences.

Table 3. Summary of key differences between JAGS and Stan

JAGS Stan

Inference Bayesian only (MCMC) Bayesian (MCMCwithNUTS and variational inference) and penalizedmaximum likelihood

Tuning Automatic with no options Automatic with options for target acceptance rate (adapt_delta), massmatrix (diagonal or

dense)

Discrete

parameters

Use directly Incompatible–must bemarginalized out analytically

General pros Easy to use, no tuning,

discrete parameters

Scales well with dimensionality, posterior complexity; suitable for hierarchical models, especially

the non-centered form

General cons Few alternatives to reduce

run-timewhen

prohibitively slow

No discrete parameters, more difficult modelling language and additionalMCMCdiagnostics to

check

Potential

pathologies

No feedback Divergences and excessive tree depths warn of steep or flat curvature, respectively
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instance, a model that is faster in Stan with a specific prior or

parameterization may be faster in JAGS with alternatives. Nev-

ertheless, the results from our case studies suggest that Stan

will often bemore efficient and thus provide faster inference.

Although our focus was on quantifying sampling efficien-

cies, the software platforms also behave differently for patho-

logical models. Pathologies are properties of the posterior

which obstruct an algorithm’s ability to explore the entire pos-

terior, resulting in biased inference of quantities of interest

(Betancourt 2016a). For instance, posteriors with regions of

very low or high curvature (gradients) can be pathological for

HMC (section 6.6, Livingstone et al. 2016). Pathologies affect

both Stan and JAGS, but Stan naturally diagnoses them: regions

of high curvature are identified by divergences, and flat regions

by excessive tree depths (Betancourt 2016a). JAGS provides no

such feedback, and pathologies may not be apparent using tra-

ditional MCMC diagnostics. Pathologies using Stan occur in

practice: centered hierarchical models can exhibit biased

hypervariances due to high curvature (Fig. 5a). A Stan user

can try to eliminate potential bias by reducing the step size,

reparameterizing (e.g. non-centering, Fig. 5b–d), changing pri-
ors or restructuring their model. Thus, Stan is not only more

efficient than JAGS, but it may also provide more robust infer-

ence because a user is more likely to detect and eliminate

potential biases.

Despite its promise, HMC has some clear disadvantages,

with the most critical that discrete parameters are disallowed,

such as a discrete latent states or population numbers (e.g. Dail

& Madsen 2011). HMC can still be used if the parameters can

be marginalized out analytically, as in the binary states of the

Swallows model, and this technique is often possible and can

also make substantial improvements for JAGS as well (results

not shown). HMC is also sensitive to tuning, despite the

automation provided byNUTS. For instance, if warm-up peri-

ods are too short to effectively explore the entire posterior, then

the step size and mass matrix will be suboptimal and efficiency

may suffer. Users must also be more involved in assessing tun-

ing for Stan, and be familiar with the principles of HMC to

understand diagnostic output from Stan.

There are other HMC algorithms in addition to NUTS, and

other gradient-based algorithms for Bayesian inference, which

were not tested here. For instance, Riemann Manifold HMC

varies the mass matrix along the trajectory (Girolami &

Calderhead 2011; Betancourt 2013) and variational inference

is a faster alternative toMCMCwhich approximates the poste-

rior (Kucukelbir et al. 2016). There are also alternative soft-

ware platforms not tested here, such as NIMBLE (de Valpine

et al. 2016) and ensemble sampling (Goodman & Weare

2010), and future work comparing these to JAGS and Stan

would be worthwhile. Stan is also not the only platform cou-

pling automatic differentiation andHMC that is used by ecolo-

gists. Both AD Model Builder (Fournier et al. 2012) and

Template Model Builder (Kristensen et al. 2015) have HMC

capabilities, but neither are as well developed ormature as Stan

(author CCM is a developer of them). Our results suggest

improving HMC capabilities in these software programs

would be worthwhile for their user bases.

The preferred software depends on the situation (Table 3),

and JAGS will clearly remain a valuable tool when run-time is

not prohibitive, but also likely in additional cases such as pro-

totyping models or introducing Bayesian techniques. Stan is

clearly the best option for highly parameterized models or

smaller models with more difficult geometries (e.g. high or ani-

sotropic correlations). One promising application for HMC is

fisheries stock assessment models, which are often extremely

large, nonlinear hierarchical models that rarely use Bayesian

inference because of prohibitively slow run-times (e.g. Stewart

et al. 2013). Many other fields likely have similar examples

where Bayesian inference is currently infeasible, and we antici-

pate that HMCwill make some of these problems tractable for

the first time.

Increasingly large and complex data sets, and powerful

software tools, allow analysts to investigate ecological pro-

cesses which were previously infeasible. Here we demon-

strated that Stan, which implements HMC in a flexible

modelling platform, is a promising tool when status quo

methods such as JAGS are prohibitively slow. We believe

Stan should be in the methodological toolbox for every

quantitative ecologist because it will extend the boundaries

of feasible models for applied problems and lead to better

understanding of ecological processes.
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